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Abstract—Optical injection locking was experimentally per-  dispersion [6]. To cope with the problem, single-sideband with
formed using a 38-GHz-band InP-based HEMT MMIC oscillator  carrier (SSB) and double-sideband with suppressed-carrier
and a 1.55um lightwave. Two optical modulation schemes were (DSB-SC) optical modulation, which is achieved by using a

compared for optical injection locking, and no difference was
found except for the optical modulation frequency. With sup- Mach—Zehnder modulator (MZM), have been proposed [7], [8].

pressed carrier modulation of the lightwave, phase noise of less The DSB-SC modulation signal is frequency-doubled at
than —73.2 dBc/Hz at a 10-kHz frequency offset and a 14-MHz photodetection, while that of SSB is the same as the original

locking range were achieved. signal. Thus the DSB-SC modulation frequency can be half
Index Terms—nP HEMT oscillator, millimeter-wave, optical-  the frequency necessary at detection. This enables high-speed
injection locking, optical suppressed-carrier modulation. optical modulators. Injection locking more efficient than

subharmonic injection locking can be expected when using

DSB-SC, because the deepest modulation depth can be obtained

as long as the magnitude of the illuminated power is fixed.
HE MERGING of microwave and optical technologiegvioreover, the mm-wave signal transmission characteristics of
will affect the development of ﬁber-optical distribution Ofa DSB-SC |ightwave are more stable against fiber chromatic

microwave and millimeter-wave (mm-wave) signals, optical ifbispersion than those of an SSB lightwave [9].

terfacing, and isolating control of RF signals in radio-on-fiber, |n this paper, the first trial results of direct optical injection

array antenna systems, and so on. The development of higtking using a 38-GHz-band InP-based HEMT MMIC oscil-

speed, highly efficient photo-responsive devices for these Systor and a 1.55:m DFB laser diode (LD) with DSB-SC mod-
tems is expected. An optically injection-locked microwave Qjjation are presented.

mm-wave oscillator is an attractive candidate for such devices.

Several research groups have been working on optical injec- Il. THEORY
tion locking technologies using microwave and mm-wave oscil- ) ) )
lators made with IMPATT, FET, and HBT devices [1]-[5]. In/* Optical Modulation and Detection
direct subharmonic optical injection locking of an IMPATT os- An optically modulated sinusoidal signal creates optical side-
cillator has been demonstrated up to 39 GHz [1]. Direct opticahnds depending on the optical modulation, as illustrated in
injection locking was reported at 14 GHz using an InAlAs/InFig. 1, and is photodetected as cross terms of the carrier and
GaAs HBT-based MMIC oscillator and a 1.58n light source the sideband in optic-to-electric conversion (O/E).
[5]. Since most investigations concerning optical fiber commu- In the usual DSB modulation, i.e., with intensity modulation
nications have concentrated on the 1;68-wavelength, where or amplitude modulation, the photocurrefytafter O/E is ex-
the transmission loss of fiber is lowest, it is important to investpressed as
gate InP-based heterostructure devices illuminated by Amb5-
light sources. I o< Popt [1 +mosin (27 f1)] @)

A mm-wave signal is degraded or lost when the signal \iﬁhere
transmitted on a 1.5p optical carrier with double-sideband
(DSB) modulation and photodetected after passing throug A time-

some length of single-mode optical fiber. This is explained P optical power illuminating the photodetector:
by the interference effect of sidebands with fiber chromatic = °** puca’ p . 9 P ’
meo  optical modulation depth [8].

The original modulating signal appears in the second term of the
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. INTRODUCTION

hf frequency of the signal modulating lightwave;
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where fj is the frequency of the modulating signal [8]. The f=38.8 [GHz] !
frequency is doubled through optical transmission. W¢h '
equals tof, the DSB-SC signal after O/E is same as that of DSB/9- 2. Experimental setup.
meo of which is 1, i.e., 100% (see Fig. 1).
-10
B. Optical Injection-Locking Range 2
The modulated optical signals can be either directly illumi- E
nated onto the active device of the oscillator or received by a 2 -0
photodiode and then injected electrically to the oscillator cir- 5 \
cuit. The locking range\ f,,, for small signal injection is de- 2 0
rived using Adler’s equation [10], and expressed as e 50
fosc -ij _
Afn, = . 3 60
f Qernt Posc ( )
-70
where =10 -5 0 5 10
Sosc frequency of the illuminated oscillator; frequency — 38862 [MHz]
Qext external quality factor of the oscillator;

P,.;andP,,. power of the injected signal and oscillatof9- 3-  Bxample of the injection-locked condition.
output, respectively [2].
Then, considering the second term of (1), (3) can be rewritt@gnthe InAIAs Schottky barrier or donor layers. The oscillator
as signal was output through a 10-dB buffer amplifier in the MMIC
and monitored with a spectrum analyzer. The drain bias voltage
VPosc - Afm _ ot Jose. (4) forthe HEMT was set at 2 V, and that for the gate varied from
mo - Fopt Qeat —0.4t0—-0.6 V; in this range the self-oscillating frequency and

. . . .- the output power of the oscillator ranged from 38.6 to 39.2 GHz
whereC,,,, is a parameter that includes coupling efficiency angnd around-3 dBm, respectively, without illumination.

photo-responsivity. Sincg,,. and Q..; can be taken as con- SO L ?

: : Optical illumination was applied from a 1.54n DFB LD.
stant values, the right-hand side of (4) becomes constant. Th}ﬁ . .
A, is proportional to the illuminated powgt, .. For DSB-SC & observed frequency shift and the power degradation were

. . —200 MHz and less than 1 dB, respectively, at the gate bias
modulationmo of 100% was used in (4) f —0.6 V when the oscillator HEMT was illuminated with a
Equation (4) was used to compare optical mOdUIatio%SSﬂIm light at about 7 dBm and without mm-wave modula
schemes in terms of optical injection locking. tion. The frequency shift decreased, while the power degrada-
tion increased by a few dB, as the bias increased. These were
related to the virtual gate bias change of the HEMT caused by

A. Setup the internal photovoltaic effect [12].

Fig. 2 shows our experimental setup to evaluate the phasé € lightwave from the LD was DSB-SC modulated exter-
noise and locking range of an optically injection locked osciP@ly by @ 19.4-GHz mm-wave sinusoidal signal through an op-

lator. tical MZM so that the injected signal frequency was close to the

The oscillator used in this experiment was a 38-GHz-barsg!f-oscillating frequency of the illuminated oscillator; i.e., 38.8
InP-based HEMT MMIC oscillator with a coplanar waveguidgHz'
(CPW) [11]. The HEMT in the oscillator had an InAlAs/InGaAs , .
pseudomorphic structure. The 1.58 lightwave was absorbed B- Results and Discussion
in the 20-nm thick 19 s0G&.20As channel layers of the HEMT 1) Phase noise:Fig. 3 is an example of the spectrum at the
and the additional 20-nm thick dn;Gay 47As layers, but not optical injection locking of the oscillator.

Ill. EXPERIMENTS
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Fig. 4. Locking range versus illuminated power.

Less than—73.2 dBc/Hz of phase noise was observed at

21

IV. CONCLUSIONS

Optical injection locking was experimentally performed
using a 38-GHz-band InP-based HEMT MMIC oscillator and
a DSB-SC modulated 1.56m lightwave.

Phase noise of less that¥3.2 dBc/Hz at a 10-kHz frequency
offset and a 14-MHz locking range were achieved. Two optical
modulation schemes for optical injection were compared, and
the difference in the optical modulation was found not to affect
the phase-locking performance.
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10-kHz frequency offset in the spectrum under optical illumi-
nation of more than 6.6 dBm. This phase noise is as low as that
of a commercial synthesizer in 38-GHz range [13]. The phase
noise of the signal source was83.5 dBc/Hz at 10-kHz fre-
quency offset of 19.9 GHz; larger by 10 dB. The phase noise
might increase by 6 dB because the signal is frequency-doubled?!
in DSB-SC transmission, so the difference in phase noise could
be about 4 dB. This degradation could be caused primarily bys]
the frequency detuning between the injection signal frequency
and the free-running oscillator frequency [14]. The free-running 4
frequency of oscillator illuminated might change easily when

(1]

the optical power fluctuated with vibration of optical probe. (5]
2) Locking Range:While changing the illuminating power
P,,:, we measured the locking rangef,,,. A maximumaA f,,, [6]
of 14 MHz was obtained at oscillator outpt,. of —8 dBm
andr,,; of 6.8 dBm. Fig. 4 showa f,,, as a function of?, ... To 7]

compensate the fluctuations of the oscillator power, the values
of Af,, were multiplied by the values af F, ... To allow com-
parison of optical modulation schemes, DSB results are alsd®
plotted as squares) for mo = 0.7 and triangles 4\) for

mo = 0.6. Theoretical values calculated from (4), the left-hand [©]
side of which was assumed to be constant, are shown as a dashed
line in Fig. 4. [10]

The results imply that there is no significant difference in the 11]
modulation schemes for illumination, i.e., DSB-SC and DSB, at
the modulation depth of 100%.

The values ofA f,,, were small despite the magnitude of the il-
luminated optical power. Applying 200 f@p...:, which was ob-
tained experimentally [15], the injection power estimated from/13l
(3) was—30 dB lower than that from (2). This is because the[14
frequency response of photodetection was restricted by a longer
minority carrier lifetime in the HEMT, which affected the in- (1]
ternal photovoltaic effect [12], which in turn affected the large
optical gain obtained near the dc region.

[12]
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